Chemistry: Periodic Table Trends Graphing Mini-Lab

WHAT TO TURN IN: Graph Question	ons #1-12
---------------------------------	-----------

Purpose: To find trends within the periods and groups of the periodic table.

Introduction

When the elements are arranged in order of increasing atomic number, there is a periodic recurrence of properties that leads to the grouping of the elements. This is *periodicity*. Elements in vertical columns form groups that are characterized by similarities in physical and chemical properties. These similarities are due, in a large part, to the fact that all of the elements within a group have the same outer-shell (valence) electron number. In this activity you will explore the group and periodic variations of atomic radius and first ionization energies.

Procedure – Double line graph

- 1) Using the data listed in the table on the next page, plot the ionization energy and the atomic radius of each element on the y-axis against the atomic number on the x-axis. Use two different colors. Plot both sets of data on the same graph.
- 2) Draw a triangle around the points represented by Group IA elements.
- 3) Draw a square around the points representing the period 2 elements.

GRAPHING GUIDELINES: Use a ruler; use pencil; title the graph; label each axis; make the graph fit the whole piece of paper; keep the increments on each axis consistent.

Questions

- 1) How do the atomic radii change as you go down Group IA?
- 2) How do the ionization energies change as you go down Group IA?
- 3) How do the atomic radii change as you go across period 2?
- 4) How do the ionization energies change as you go across period 2?
- 5) Define ionization energy in common terms.
- 6) Define periodicity in your own words.
- 7) Why are periodic trends only "trends" and not exact patterns?
- 8) What is the Law of Octaves?
- 9) Apply the Law of Octaves to this lab.
- 10) Why are the ionization energies of helium and neon so high?
- 11) In the data table, what does the unit "nm" mean?
- 12) In the data table, what does the unit "kJ/mol" mean?

Element	Atomic #	Atomic Radius (nm)	First ionization energy (kJ/mol)
Hydrogen	1	0.037	1312
Helium	2	0.540	2372
Lithium	3	0.152	519
Beryllium	4	0.111	900
Boron	5	0.088	799
Carbon	6	0.077	1088
Nitrogen	7	0.070	1406
Oxygen	8	0.066	1314
Fluorine	9	0.064	1682
Neon	10	0.070	2080
Sodium	11	0.186	498
Magnesium	n 12	0.160	736
Aluminum	13	0.143	577
Silicon	14	0.117	787
Phosphorus	s 15	0.110	1063
Sulfur	16	0.104	1000
Chlorine	17	0.099	1255
Argon	18	0.094	1519
Potassium	19	0.231	418
Calcium	20	0.197	590