and related topics such as <u>mass \rightarrow mol</u> and <u>mol \rightarrow mol</u>, from ChemTeam.com

Complete the following 10 problems: #1 bd; 2 ab, 3ac, 4a, 5a, 6b, 8b You may do the rest, but the others are not mandatory.

- 1) 4 FeCr₂O₇ + 8 K₂CO₃ + O₂ \rightarrow 2 Fe₂O₃ + 8 K₂CrO₄ + 8 CO₂
 - (a) How many grams of $FeCr_2O_7$ are required to produce 44.0 g of CO_2 ?
 - (b) How many grams of O₂ are required to produce 100.0 g of Fe₂O₃?
 - (c) If 300.0 g of FeCr₂O₇ react, how many g of O₂ will be consumed?
 - (d) How many g of Fe₂O₃ will be produced from 300.0 g of FeCr₂O₇?
 - (e) How many grams of K₂CrO₄ are formed per gram (exactly 1 g) of K₂CO₃ used?
- 2) Given the reaction $S + O_2 \rightarrow SO_2$
 - (a) How many grams of sulfur must be burned to give 100.0 g of SO₂?
 - (b) How many grams of oxygen will be required for the reaction in part (a)?
- 3) 6 NaOH + 2 Al \rightarrow 2 Na₃AlO₃ + 3 H₂
 - (a) How much aluminum, in grams, is required to produce 17.5 g of hydrogen?
 - (b) How much Na₃AlO₃, in g, can be formed from 165.0 g of sodium hydroxide?
 - (c) How many moles of NaOH are required to produce 3 g of hydrogen?
 - (d) How many mol of hydrogen can be prepared from 1 gram of aluminum?
- 4) $BaO + H_2SO_4 \rightarrow BaSO_4 + H_2O$
 - (a) How much BaSO₄, in g, can be formed from 196.0 g of H₂SO₄?
 - (b) If 81.00 g of water is formed during this reaction, how much BaO, in g ,was used?
- 5) NaCl + AgNO₃ \rightarrow AgCl + NaNO₃
 - (a) 78.00 g of NaCl should produce how many grams of AgCl?
 - (b) How much AgCl, in grams, can be produced from 107.0 g of AgNO₃?
- 6) $B_2O_3 + 3 Mg \rightarrow 3 MgO + 2B$
 - (a) How much boron, in grams, can be obtained from 10.00 grams of B_2O_3 ?
 - (b) How much magnesium, in g, is required to produce 400.0 grams of boron?
- 7) SnO₂ is reduced by carbon according to the this reaction: SnO₂ + C \rightarrow Sn + CO₂
 - (a) How many grams of CO_2 are formed when 1.00 gram of tin is produced?
 - (b) How much SnO₂ (grams) is required to produce 6.00 grams of tin?
 - (c) How much tin (in grams) is produced per gram (exactly 1 gram) of carbon used?

8) 2 KMnO₄ + H₂SO₄ \rightarrow K₂SO₄ + Mn₂O₇ + H₂O

- (a) How many moles of Mn₂O₇ can be formed from 196.0 g of KMnO₄?
- (b) How many grams of Mn₂O₇ can be formed from 390.0 g of KMnO₄?
- (c) How much H₂SO₄ is needed to produce 27.00 g of water?
- 9) Determine moles of barium bromate [Ba(BrO₃)₂] that can be prepared from 7.000 moles each of HBrO₃ and Ba(OH)₂, given this equation: 2HBrO₃ + Ba(OH)₂ → Ba(BrO₃)₂ + 2H₂O (Hint: calculate two separate answers.)
- 10) Determine moles of Na₂S that can be prepared by the reaction of 0.2240 moles of sodium with excess sulfur. $16 \text{ Na} + \text{S}_8 \rightarrow 8 \text{ Na}_2\text{S}$