Chemistry Lab: M&Ms and the Mole

WHAT TO TURN IN: Hypothesis, Data Table, Calculations, Error Analysis, Conclusion, Questions

OBJECTIVES

- To determine how much of a mole of M&Ms can fit in our classroom
- To determine how many classrooms would be needed to hold an entire mole of M&Ms

MATERIALS

M&M candies (about 3 pounds), other round candies, marbles, or beads Meter sticks Scientific calculators A cubic decimeter (1 $dm^3 = 1 L$) plastic cube

PROCEDURE on back

CALCULATIONS

- Step 5: volume of the classroom
- Step 6: number of M&Ms in 1 m³
- Step 7: number of M&Ms that would fill the classroom
- Step 8: how much of a mole of M&Ms can fit in the classroom
- Step 9: how many classrooms the size of ours would hold one mole of M&Ms

QUESTIONS

- 1) Does the answer you calculated for step 7 surprise you? Why or why not?
- 2) Does the answer you calculated for step 8 surprise you? Why or why not?
- 3) Why do you think M&Ms are a good choice for the "particles" in this lab?
- 4) How is DA (dimensional analysis) used in this lab?

DATA TABLE

STEP 3: Total M&Ms in 1 $dm^3 =$						
STEP 4: Length =m Width =m Height =m						
STEP 5: Volume of the classroom:m ³						
STEP 6: Number of M&Ms in a $m^3 =$						
STEP 7: Number of M&Ms in one classroom =						
STEP 8: Amount of moles in one classroom =						
STEP 9: Number of classrooms needed to hold 1 mol M&Ms =						

PROCEDURE

- 1) Write a hypothesis: How many moles of M&Ms do you think will fit in our classroom? If you think it is less than one mole, how much of a fraction of one mole will fit?
- 2) Carefully fill the plastic 1-dm³ cube with M&Ms.
- 3) A few students will count the number of M&Ms in one dm³. Record this number in the data table. It is the same for everyone in the class.
- 4) A few students will measure the length, width, and height of our classroom (in meters) with the meter sticks. Record in data table.
- 5) Calculate the volume of the classroom: $(L \times W \times H)$ in m³. Record in data table.
- 6) Calculate the number of M&Ms in 1 m³, using the number of M&Ms from step 3. Record your answer in the data table.

# M&Ms	Х	1000 dm ³	=	<u># of M&Ms</u>
1 dm ³		1 m ³		1 m ³
<mark>↑</mark>				
ANSWER				
FROM STE	<mark>P 3</mark>			

7) Calculate the number of M&Ms that would fill the classroom, using the number of M&Ms from your answer in step 6 and the volume of the room from step 5. Record your answer in the data table.

<mark># M&Ms</mark> x	# m³ =	<u># of M&Ms</u>
1 m ³	<mark>1 classroom</mark>	1 classroom
↑	<mark>↑</mark>	
ANSWER	ANSWER	
FROM STEP 6	FROM STEP 5	

Calculate how much of a mole of M&Ms can fit in our classroom, using your answer from step 7. (This time, the "representative particle" used is M&Ms.) <u>You should get a *very* small number</u>. Record your answer in the data table.

<mark># <mark>M&Ms</mark></mark>	Х	1 mol	_ =	<u> </u>
1 classroom		6.02 x 10 ²³ M&Ms		1 classroom
↑ ANSWER				
FROM STEP	7			

9) Calculate how many classrooms the size of ours would be needed to hold one mole of M&Ms. Use the *reciprocal* or *inverse* of the answer from step 7. You should get a *very* large number. Record your answer in the data table.

