CHEMISTRY REFERENCE SHEET – Mrs. Bauck

POLYATOMIC IONS

Chemistry 1 Honors students must memorize these 27 ions.

Chemistry 1 students must memorize 20 ions (delete the seven marked with ***).

+1 CHARGE:

ammonium (NH₄)+

-1 CHARGE:

acetate $(C_2H_3O_2)^-$ or $(CH_3COO)^-$

bicarbonate or hydrogen carbonate (HCO₃)

*** bisulfate or hydrogen sulfate (HSO₄)

*** bromate (BrO₃)-

chlorate (ClO₃)⁻

chlorite (ClO₂)

cyanide (CN)⁻

hydroxide (OH)⁻

hypochlorite (CIO)⁻

nitrate (NO₃)-

nitrite (NO₂)

perchlorate (CIO₄)-

permanganate (MnO₄)⁻

*** thiocyanate (SCN)-

-2 CHARGE:

carbonate (CO₃)-2

*** carbonite (CO₂)⁻²

chromate (CrO₄) -2

dichromate (Cr₂O₇)-2

*** oxalate (C₂O₄)-2

silicate (SiO₃)⁻²

sulfate $(SO_4)^{-2}$

sulfite (SO₃)⁻²

*** thiosulfate (S₂O₃)⁻²

-3 CHARGE:

*** arsenate (AsO₄)⁻³

phosphate (PO₄)⁻³

phosphite (PO₃)⁻³

COMMON ACIDS

Students must know these acids and how to dissociate them: (Chemistry IH will have more acids to name.)

$HC_2H_3O_2$	$HC_2H_3O_2 (aq) \rightarrow H^+ (aq) + (C_2H_3O_2)^- (aq)$
or CH₃COOH	$CH_3COOH (aq) \rightarrow H^+ (aq) + (CH_3COO)^- (aq)$
H_2CO_3	H_2CO_3 (aq) \rightarrow H^+ (aq) + $(CO_3)^{-2}$ (aq)
HCI	$HCI (aq) \rightarrow H^{+} (aq) + CI^{-} (aq)$
HNO_3	HNO_3 (aq) \rightarrow H^+ (aq) + $(NO_3)^-$ (aq)
H_3PO_4	H_3PO_4 (aq) \rightarrow H^+ (aq) + $(PO_4)^{-3}$ (aq)
H_2SO_4	H_2SO_4 (aq) \rightarrow H^+ (aq) + $(SO_4)^{-2}$ (aq)
	or CH ₃ COOH H ₂ CO ₃ HCI HNO ₃ H ₃ PO ₄

THE SEVEN DIATOMIC MOLECULES ("Super Seven")

diatomic when alone, uncombined with other symbols

H₂ F₂ O₂ N₂ Cl₂ Br₂ I₂

"MIDDLE METALS" lons of transition elements need Roman numerals, EXCEPT Ag⁺¹, Cd⁺², Zn⁺²

COMMON CHARGES (OXIDATION NUMBERS)

"Charge Chant": +1 +2 +3 mixed -3 -2 -1 0 +2 in the middle, unless they tell you otherwise

IIIA IVA VA* VIA* VIIA* VIIIA **Group number:** IA IIA 2 18 13 14 15 16 17 Main ionic charge: +2 +3 М -3 -2 -1 none

1 most of Group IVA (14) don't usually form ions; when they do, mixed charges are possible when applicable