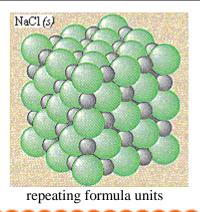
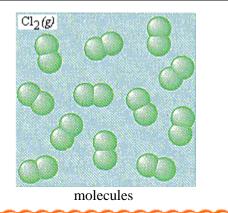
Ch. 8 Notes ~ Covalent Bonding

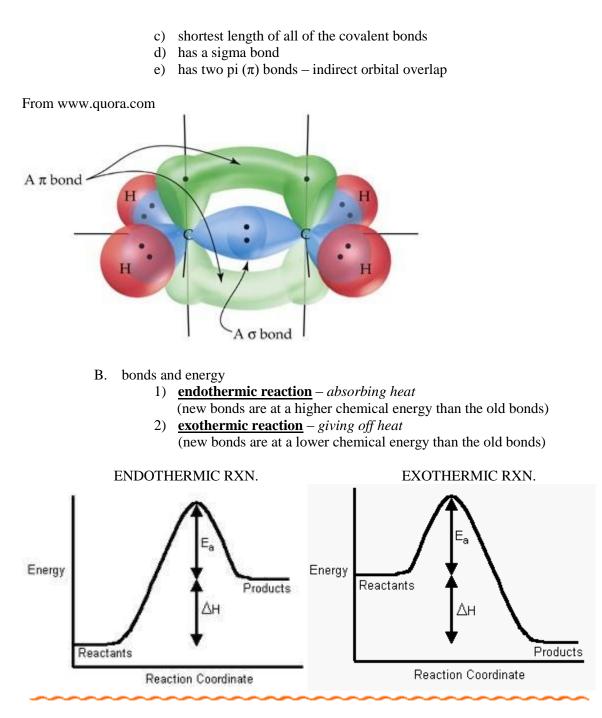

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.


8.1 notes

- I. Compounds a review
 - A. <u>compound ("cmpd.")</u>—a substance formed from more than one element
 - B. <u>molecule</u> or <u>molecular compound</u>—a group of atoms with no net charge
 - C. <u>molecular formula</u>—symbols representing the composition of a *molecular compound*

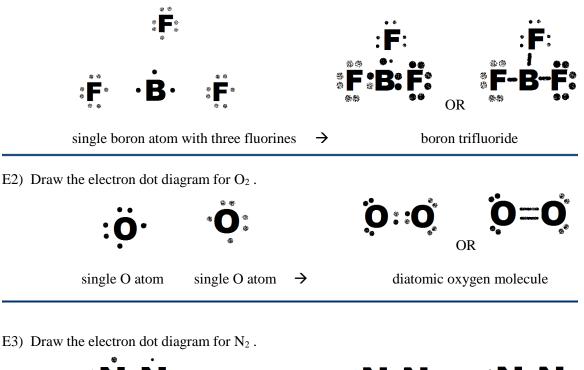
	Molecular compounds	Ionic compounds						
Particles	Molecules	Formula units made of ions cations & anions						
Elements	Nonmetals	Metals & nonmetals						
Conductivity	Low "nonelectrolytes"	High (when molten or in aqueous solution) "electrolytes"						
State at room temp.	Solid, liquid, or gas	Solid						
Type of Bond	Polar or nonpolar covalent	Ionic (stronger)						
Misc.	Covalent compounds	Salts						

Comparison of molecular and ionic compounds



II. Types of Covalent Bonds

- A. <u>covalent bonding</u>—electron sharing between nonmetals
 - single covalent bond—a sharing of one pair of electrons between two atoms


 a) weaker than an ionic bond
 - b) weakest of all of the covalent bonds
 - c) longest length of all of the covalent bonds
 - d) sigma (σ) bond overlapping orbital clouds between atoms
 - 2) double covalent bond
 - a) sharing two pairs of electrons between two atoms
 - b) has a sigma bond
 - c) has a pi (π) bond indirect orbital overlap
 - 3) triple covalent bond
 - a) sharing three pairs of electrons between two atoms
 - b) strongest of all of the covalent bonds

III. Covalent Compounds: Drawing Structures

- A. remember the octet rule (NO lone electron dots when finished!)
- B. draw each electron dot diagram using the "A" group numbers
- C. make the compound by combining the individual structures

E1) Draw the electron dot diagram for BF_3 .

8.2 notes

IV. Naming Molecules: Binary molecular (BM) compounds

- A. <u>binary compound</u>—composed of two elements
- B. <u>binary molecular compound</u>—("BM")— nonmetal / nonmetal combination
 - 1) no ionic charges involved (no crisscross)
 - 2) ending in *-IDE*
 - 3) since there are no charges to determine the ration of symbols, *mandatory prefixes are used in naming:*

MONO-,	DI-,	TRI-,	TETRA-,	PENTA-,	HEXA-,	НЕРТА-,	OCTA-,	NONA-,	DECA-
1	2	3	4	5	6	7	8	9	10
<u>.</u>		(mono	- is not use	d on the fir.	st element)			

- E4) Write the chemical formula for carbon tetrachloride .
- E5) Name the compound P_2O_5 .

diphosphorus pentoxide

CCl₄

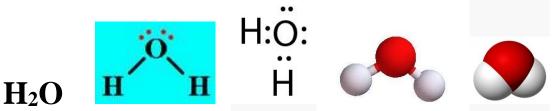
- V. Acids a preview
 - A. generic formula for an acid = HX, where H is hydrogen and X is an anion $HX \rightarrow H^+ + X^-$
 - B. <u>acid</u>—an aqueous solution with components that donate H^+ ions when in solution
 - C. **oxyacid**—an acid with oxygen in its anion

1)	naming binary acids, ending in -IDE:	hydro-STEM-ic acid
	(HBr = hydrobromic acid)	
2)	naming oxyacids with an anion ending in –ATE:	STEM-ic acid
	$(HClO_3 = chloric acid)$	

- 3) naming oxyacids with an anion ending in –ITE: STEM-ous acid (H₂SO₃ = sulfurous acid)
- NOTE: (STEM is the element name, other than H or O)

ACIDS to know:
HC ₂ H ₃ O ₂ or CH ₃ COOH
H ₂ CO ₃
HCI
HNO ₃
H ₃ PO ₄
H₂SO₄

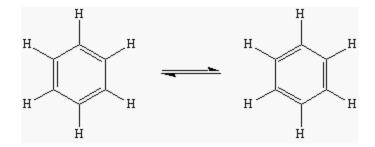
VI. Molecular Elements – a review


THE SEVEN DIATOMIC MOLECULES ("Super Seven"):H2F2O2N2Cl2Br2I2

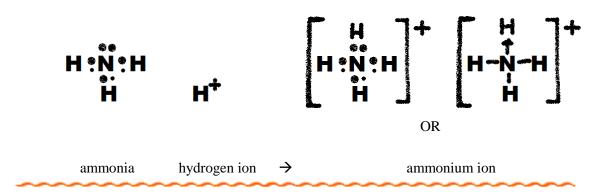
8.3 notes

VII. Molecular Structures

A. general terms


- 1) molecular formula—writing out the symbols and subscripts
- 2) structural formula-drawing lines connecting the symbols
- 3) Lewis structure—electron dot diagram
- 4) ball-and-stick model—uses spheres for atoms and sticks or springs for bonds
- 5) space-filling model—attaching the spheres together in a molecule (images from www.eou.edu, www.chem110.collegescience.com)

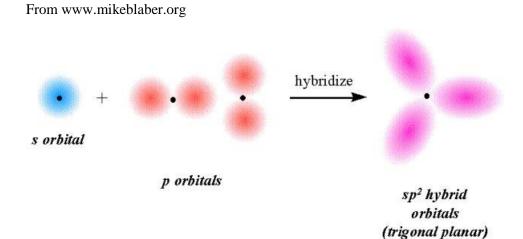
B. dot diagrams can be drawn for polyatomic ions and monatomic ions, as well as ionic compounds and molecular compounds


C. resonance structures

- 1) **resonance**—a bond that "flips" between two positions
- 2) the actual structure is a blend of the options (image from kentchemistry.com)

D. exceptions to the octet rule

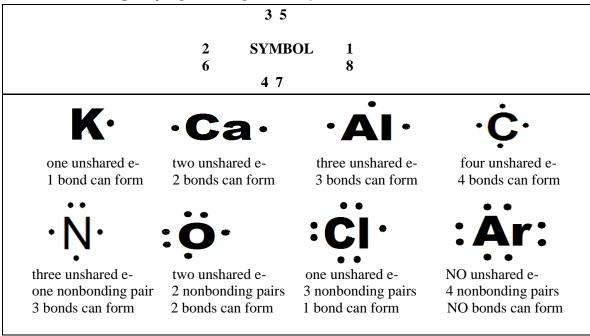
- 1) odd number of valence electrons
- 2) expanded octets
- 3) <u>coordinate covalent bonds</u>—covalent bonds consisting of *two electrons donated by a single atom*


8.4 notes

- VIII. Molecular Shape
 - A. hybrid orbitals atomic orbitals mix to form blended, identical orbitals

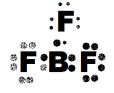
1) single bond = sp^3

2) double bond =
$$sp^2$$

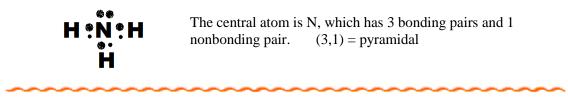

3) triple bond = sp

B. <u>VSEPR</u> = Valence Shell Electron Pair Repulsion model

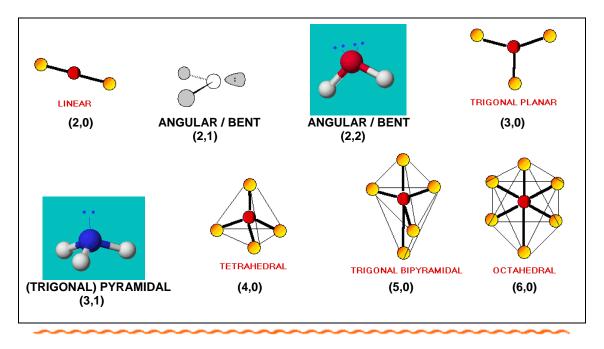
- 1) valence electrons repel themselves as far apart as possible
- 2) VSEPR predicts 3-D geometric shapes of molecules based on the numbers of bonding and nonbonding pairs on the central atom
- 3) a double or a triple bond is treated as one main bonding "arm"
- 4) electron dot diagrams (Lewis structures) are used to predict models' shapes


"right, left, up, down, top all the way around – (counterclockwise)"

VSEPR SHAPES


# BONDING PAIRS OF CENTRAL ATOM	# NONBONDING PA OF CENTRAL ATO		BOND ANGLE
2	0	linear	180°
2	1	angular (bent)	<120°
2	2	angular (bent)	<109.5°
3	0	trigonal planar (triangular	planar) 120°
3	1	pyramidal (trigonal pyram	idal) <109.5°
4	0	tetrahedral	109.5 °
5	0	trigonal bipyramidal	90° & 120°
6	0	octahedral	90 °

E4) What is the shape of a BF₃ molecule?



The central atom is B, which has 3 bonding and 0 nonbonding pairs. (3,0) = trigonal planar

E5) What is the shape of an NH₃ molecule?

VSEPR MODELS

- IX. Electronegativity and Polarity
 - A. <u>electronegativity</u>—the "greediness" of an atom for electrons when bonding
 - B. group trends: electronegativity decreases from top to bottom
 - C. periodic trends: electronegativity increases from left to right
 - D. Δ EN (*electronegativity differences*) give more detailed information about bond strength than just generalizing BI, BM, TI, etc... but these are just guidelines

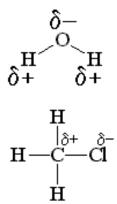
	$\Delta EN VALUES$
0.0 - 0.4	nonpolar covalent
0.4 - 1.0	moderately polar covalent
1.0 - 2.0	very polar covalent
> 2.0	ionic

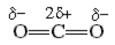
	Electronegativity Values																
1																	2
н													Не				
2.1																	
3	4											5	6	7	8	9	10
Li	Ве	B C N O F													Ne		
1.0	1.5	2.0 2.5 3.0 3.5 4.0															
11	12	13 14 15 16 17												18			
Na	Mg	AI SI P S CI												Ar			
0.9	1.2											1.5	1.8	2.1	2.5	3.0	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
0.7	0.9	1.3	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.9	1.9	2.0	2.2	
87	88	103															
Fr	Ra	Lr															
0.7	0.9																

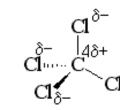
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
1.1	1.1	1.1	1.1	1.2	1.2	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
1.1	1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.5

E6) OF_2 Classify the bond between O and F based on electronegativity differences. 4.0-3.5=0.5 moderately polar covalent

E7) Fe₂O₃ Classify the bond between Fe and O based on electronegativity differences. 3.5 - 1.8 = 1.7 very polar covalent

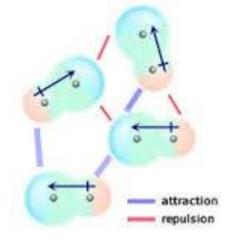

- X. Polar Bonds and Polar Molecules
 - A. **<u>polar bond</u>** (**<u>polar covalent bond</u>**)—a covalent bond with *unequal sharing* of electrons (unequal "pull" or preference)
 - 1) a **polar molecule** has an *asymmetrical* molecular shape
 - 2) partially positive = δ + partially negative = δ -
 - 3) because of the two ends, a polar molecule is also called a **dipole**
 - B. <u>nonpolar covalent bond</u>—a covalent bond with equal sharing of electrons
 - 1) examples: diatomic molecules
 - 2) symmetrical molecular shape
 - C. Every element has an electronegativity value assigned to it. Electronegativity differences determine bond strength.




NONPOLAR molecule

POLAR molecule (dipole)

from www.webchem.net:



overall polar

overall non-polar

- D. IMF intermolecular forces
 - 1) London / van der Walls forces attractions btw nonpolar molecules
 - 2) Dipole-dipole forces attractions between polar molecules

From Chemistry 301: dipole-dipole forces

