Ch. 5 Notes - ELECTRONS IN ATOMS

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

- 5.1 Notes
 - I. Light and Quantized Energy
 - A. The Wave Nature of Light
 - 1) the wave nature of light: light acts as a moving wave
 - 2) wave anatomy and characteristics
 - a) **origin**, zero line, base line—flat line running horizontally, cutting the wave in two; line of zero movement
 - b) <u>crest (</u>"peak")
 - c) <u>trough (</u>"valley")
 - d) <u>amplitude</u>—vertical distance from the origin to the crest, or from the origin to the trough
 - e) <u>wavelength (λ </u>)—horizontal distance between two equivalent points on a wave, such as between two crests or two troughs
 - f) <u>wave height</u>—vertical distance from crest level to trough level; (2 x amplitude)

E 1) A wave has a frequency of 6.6×10^6 Hz. What is its wavelength?

$$c = \lambda v \qquad \lambda = \underline{c} = \underline{3.0 \times 10^8 \text{ m/s}} = \underline{45 \text{ m}}$$

$$\underline{v} = \underline{6.6 \times 10^6 \text{ 1/s}}$$

E 2) A wave is estimated to have a wavelength of 4.47 x 10^{-4} m. What is its frequency?

$$c = \lambda v$$
 $v = \underline{c}_{\lambda} = \frac{3.0 \times 10^8 \text{ m/s}}{4.47 \times 10^{-4} \text{ m}} = 6.7 \times 10^{11} \text{ Hz}$ (1/s = Hz)

B. The Particle Nature of Light

the particle nature of light: light acts as a stream of moving bundles of light energy called photons
wave-particle duality of nature—waves can act as particles, AND particles can act as waves
quantum—a bundle of energy; the minimum amount that can be gained or lost by an atom
photoelectric effect— electrons (photoelectrons) being ejected from a metal when the metal is exposed to high-frequency light
<u>E = energy</u> of a wave, usually measured in Joules (J)

(6) energy of a quantum or photon: E = h v

E = energy; h = Planck's constant (6.626 x 10⁻³⁴ Js); v = frequency

E 3) A photon in a wave has a frequency of 6.6 x 10⁶ Hz. What is its energy?

- E = h v E = $(6.6 \times 10^6 \text{ 1/s}) (6.626 \times 10^{-34} \text{ Js}) = 4.4 \times 10^{-27} \text{ J}$
- E 4) A quantum has a measured energy of 1.333×10^{-20} J. What is its frequency?

$$E = h v \qquad v = \frac{E}{h} = \frac{1.333 \text{ x } 10^{-20} \text{ J}}{6.626 \text{ x } 10^{-34} \text{ Js}} = \frac{2.012 \text{ x } 10^{13} \text{ Hz}}{(1/\text{s} = \text{Hz})}$$

- II. Spectra
 - A. Electromagnetic (em) spectrum—broad radiation spectrum

B. atomic emission spectrum

- 1) array of colors from a heated element, separated by a prism
- 2) set of frequencies of em waves emitted by atoms of an element

5.2 Notes

- III. Electrons and Light
 - A. evidence for <u>energy levels</u>: explanation of atomic spectra
 - 1) **ground state**—electron(s) at their lowest possible energy level
 - 2) excited state
 - a. *electron(s) at higher energy than normal*
 - b. e- absorb energy and jump to higher levels where there is room

- B. Niels Bohr (1885 1962); Bohr model proposed in 1913
 - 1) **<u>quantum number</u>** = n ("ring" number 1-7)
 - 2) nucleus as the center, composed of p^+ and n^0
 - 3) *e- orbit the nucleus; similar to planetary motion*
 - 4) e⁻ in an *orbit* have a fixed energy level
 - 5) lowest energy levels are closest to the nucleus
 - 6) **<u>quantum</u>** (see sec. I B)—a bundle of energy needed to make an electron "jump" to a higher level, which is a **<u>quantum leap</u>**
- C. <u>spectroscopy</u>—the study of substances exposed to continuous energy
 - 1) when exposed to intense energy, atoms absorb energy and become excited
 - 2) when atoms are in their excited state, their electrons jump to higher energy levels
 - 3) when the electrons eventually return to their normal (ground) state, energy is given off (emitted)
- D. quantum mechanical model of the atom
 - 1) electrons as waves
 - 2) Louis deBroglie (1892-1987)

a. all moving particles have wave characteristics

	b. particle - em wave relationship equation: $\lambda = \underline{h}$			
	mv			
λ = wavelength; h = Planck's constant (6.626 x 10 ⁻³⁴ Js);				
m = mass; v = velocity (speed with magnitude and direction)				
mv	= momentum			

- 3) **Heisenberg Uncertainty Principle**—*it is not possible to know both the exact position and velocity of an object simultaneously*
 - a. if you measure the position, you have to stop it (technically), so you cannot find the velocity or momentum
 - b. if you measure the velocity, it is moving, so you cannot pinpoint one position to measure
- 4) Erwin Schrödinger (1887-1961); model proposed 1926
 - a. based on probability of e^{-1} location, not exact path
 - b. e⁻ cloud model; "boundary surface diagram"
 - c. equation:

$$\frac{\rho^2 \psi}{\rho x^2} + \frac{\rho^2 \psi}{\rho y^2} + \frac{\rho^2 \psi}{\rho z^2} + \frac{8\pi^2 m}{h^2} (E-V)\psi = 0$$

- d. e⁻ are mathematically treated as a wave
- e. wave function—amplitude (Ψ)
- f. solved the equation for a series of wave functions (definite energy states of an e⁻ and the probability of finding it there)

5.3 Notes

- IV. Electron configurations—Distribution of Electrons in Energy Levels
 - A. <u>electron configuration</u>—specific e⁻ arrangement in orbitals
 - B. <u>atomic orbital</u>—area of high probability (~95%) of finding electrons

C. principal quantum number = n

- 1) electron energy level or "shell" number
- 2) n = 1, 2, 3, 4, 5, 6, 7
- D. energy <u>sublevels</u>—divisions within a level
 - 1) many similar energy states grouped together in a level
 - 2) different shapes: spherical, dumbbell, cloverleaf
 - 3) <u>sublevels: s, p, d, f</u> (s p d f stand for sharp, principal, diffuse, fundamental)
 - 4) maximum number of e^{-in} a principal energy level = $2n^{2}$

<u>n</u>	<u>SUBLEVELS</u>
n = 1	1s
n = 2	2s, 2p
n = 3	3s, 3p, 3d
n = 4	4s, 4p, 4d, 4f
n = 5	5s, 5p, 5d, 5f
n = 6	6s, $6p$, $6d$ – where the new elements are being placed
n = 7	as of now: 7s, 7p

SHAPES OF ORBITALS from http://boomeria.org

E. electron capacity of the sublevels: s can hold 2 e p can hold 6 e

 $d \ can \ hold \ 10 \ e^{-1} f \ can \ hold \ 14 \ e^{-1}$

- 1) orbital = one "box;" can also be a line or a small circle
- 2) *electrons* = "*arrows*"
- 3) <u>antiparallel spin</u>—electrons in an orbital spin in opposite directions, so as not to repel one another (this is shown as arrows pointing in opposite directions)

4)	rules
•	Aufbau Principle—e [•] enter low-energy orbitals first Pauli Exclusion Principle—no more than two e [•] per orbital; the e- must have compatible spins (shown by \uparrow and \downarrow) Hund's Rule: degenerate orbitals (orbitals of equal energy) have one e [•] filling each orbital before pairs can exist

5) sample electron configuration:

 $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{2} = read "1 s 2, 2 s 2, 2 p 6, 3 s 2, 3 p 2" total e = 14 (Si)$

- 6) the sum of the superscripts equals the atomic number of the element
- 7) superscripts are NOT exponents (nothing is being squared, etc.)
- 8) *** valence configurations will be s OR s and p ***
- 9) ways to do electron configurations: Aufbau diagram or periodic table location
- 10) Examples with the Aufbau diagram (see last page of notes for Aufbau diagram)
 - E5) Write out the electron configuration for nitrogen.
 - E6) Write the electron configuration for cadmium.

ANSWERS:	E5)	$1s^2 2s^2 2p^3$	E	6) 1s	$s^2 2s^2 2p^6$	$3s^2 3p^6$	$4s^2 3d^{10}$	$^{0}4p^{6}5s^{2}$	$4d^{10}$
									-

5.3/6.2 Notes (The rest of Ch. 6 was already covered before Ch. 5)

- V. The Periodic Table and Atomic Structure
 - A. electron configurations according to location
 - 1) Group IA (1) and IIA (2) = end in s
 - 2) Group IIIA-VIIIA (13-18) = end in p
 - 3) B Groups (Groups 3-12 transition metals) = end in d
 - 4) Inner transition metals = end in f
 - 5) <u>Noble gas configuration</u> = $s^2 p^6$
 - 6) **Pseudo-Noble gas configuration** (an exception; see VI. C) = $s^2 p^6 d^{10}$
 - B. Complete vs. valence electron configurations
 - 1) complete—lists all orbitals (superscripts match the atomic number)
 - 2) valence—only lists the outer shell (matches the dot diagram)
 - DOTS: "right, left, up, down, top all the way around."
 - C. Why are valence configurations s OR s/p and not normally include d or f?
 - 1) *d orbitals are "step-downs" they are one level below the valence*
 - 2) f orbitals are "two step-downs" they are two levels below the valence

ELECTRON CONFIGURATIONS AND THE PERIODIC TABLE (from FSU)

			57			

GROUP #	VALENCE #	SAMPLE VALENCE CONFIG.	# DOTS
IA (1)	1	$3s^1$	1
IIA (2)	2	$3s^2$	2
IIIA (13)	3	$3s^23p^1$	3
IVA (14)	4	$3s^23p^2$	4
VA (15)	5	$3s^23p^3$	5
VIA (16)	6	$3s^23p^4$	6
VIIA (17)	7	$3s^23p^5$	7
VIIIA (18)	8	3s ² 3p ⁶	8

D. Condensed (Noble Gas, Abbreviated) Electron Configurations
1) use the previous Noble Gas as the starting point in brackets, then finish the configuration

2)	Example 7: Indiu complete: condensed: valence	m #49 $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{10} 4p^{6} 5s^{2} 4d^{10} 5p^{1}$ [Kr] $5s^{2} 4d^{10} 5p^{1}$ $5s^{2} 5p^{1}$
3)	Example 8: Titani complete: condensed: valence	um #221s2 2s2 2p6 3s2 3p6 4s2 3d2[Ar] 4s2 3d24s2
E. <i>Except</i> 1) 2) 3)	<i>ions</i> to electron conf <i>to fill a sublevel</i> = <i>to half-fill a sublev</i> new unpredicted co Cu, expected: Cu, observed:	Figurations stable el = stable onfigurations are observed $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$ $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$

Electron Configurations for Ions - covered in chapter 7