
Chem Ch. 18 Notes: ACIDS & BASES

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

18.1 Notes

- I. Properties and Examples of Acids and Bases
 - A. <u>Acids</u> produce hydrogen ions (H^+) when dissolved in water ... more accurately, they produce **hydronium ions = H₃O**⁺
 - 1) properties: tart, sour, form electrolytic solutions of ions
 - examples: citric acid, vinegar, hydrochloric acid, sulfuric acid
 - 3) usually have H in front of the formula or COOH at the end: HCl, CH₃COOH
 - 4) turns litmus paper red
 - 5) pH less than 7
 - B. **Bases** produce hydroxide ions (OH⁻) when dissolved in water
 - 1) properties: bitter, slippery, form electrolytic solutions of ions
 - 2) examples: lye/soap, ammonia, sodium hydroxide, other metal hydroxides
 - 3) usually have OH at the end of the formula: KOH, NaOH, $Ca(OH)_2$
 - ammonia (NH₃) is a base, even though for formula doesn't look like one—it forms NH₄OH in water
 - 4) turns litmus paper blue
 - 5) pH greater than 7

C. self-ionization of water:

Images from www.worsleyschool.net/science/files/pH/page.html

II. Models of Acid-Base Behavior

- A. Arrhenius model (Svante Arrhenius, 1859-1927)
 - 1) Arrhenius acids
 - a) produce hydrogen ions (H^+) when dissolved in water
 - b) acidic hydrogen—hydrogen atoms that will be given up by acids as hydrogen ions

HA (aq) \rightarrow H⁺ (aq) + A⁻ (aq)

2) Arrhenius bases—bases that produce hydroxide ions when dissolved in water

BOH (aq) \rightarrow B⁺ (aq) + OH⁻ (aq)

B. Brönsted-Lowry model

(Johannes Brönsted, 1879-1947) and (Thomas Lowry, 1843-1909)

- 1) acid—hydrogen ion donor
- 2) *base—hydrogen-ion acceptor*
- 3) conjugate base— what the acid becomes after it donating hydrogen ion
- 4) conjugate acid what the base becomes after accepting hydrogen ion
- 5) water can function as an acid or a base
- 6) examples

E1)

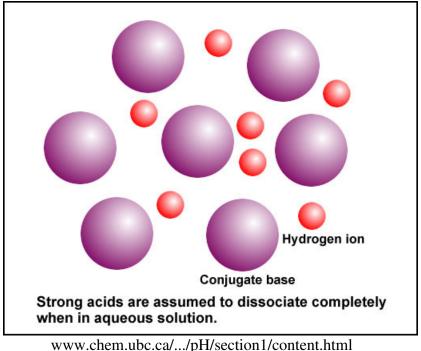
HF (aq)	+ H ₂ O (l) →	$H_3O^+(aq) +$	F (aq)
acid	base	conjugate acid	conjugate base

E2)

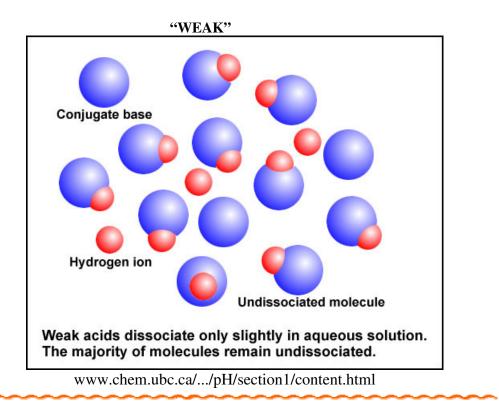
NH ₃ (aq)	+ $H_2O(l)$ -	\rightarrow NH ₄ ⁺ (aq) -	+ OH ⁻ (aq)	
base	acid	conjugate acid	conjugate base	

- C. "-protic" model
 - 1) monoprotic acids donate 1 H⁺ to the solution (HCl, HNO₃) HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq) HNO₃ (aq) \rightarrow H⁺ (aq) + (NO₃)⁻ (aq) HC₂H₃O₂ (aq) \rightarrow H⁺ (aq) + (C₂H₃O₂)⁻ (aq) 2) diprotic acids donate 2 H⁺ to the solution (H₂S, H₂SO₄) H₂S(aq) \rightarrow 2 H⁺ (aq) + S²⁻ (aq) H₂SO₄ (aq) \rightarrow 2 H⁺ (aq) + (SO₄)²⁻ (aq) 3) triprotic acids donate 3 H⁺ to the solution (H₃BO₃, H₃PO₄) H₃BO₃ (aq) \rightarrow 3 H⁺ (aq) + (PO₄)³⁻ (aq)
 - 4) **polyprotic acids** donate more than 1 H^+ to the solution (di- or tri-protic)

D. Lewis model (Gilbert Lewis, 1875-1946)


- 1) *Lewis acid— electron-pair acceptor*
- 2) Lewis base—electron pair donor
- E. Anhydrides
 - acidic anhydrides—nonmetal oxides which react with water to form acids CO₂ + H₂O → H₂CO₃ SO₃ + H₂O → H₂SO₄

 basic anhydrides—metal oxides which react with water to form bases Na₂O + H₂O → <u>2</u> NaOH
 - $ZnO + H_2O \rightarrow Zn(OH)_2$


18.2 Notes

- III. Strengths of Acids and Bases
 - A. acid strength (see diagrams below and on the next page)
 - 1) strong acids
 - a) completely dissociate into ions
 - b) *common examples: HCl, HNO₃, H*₂SO₄
 - 2) weak acids partially dissociate (not all come apart) into ions
 - B. base strength
 - 1) <u>strong bases</u>—completely dissociate (come apart) into ions
 - 2) weak bases partially dissociate (not all come apart) into ions
 - C. strength vs. concentration
 - 1) weak and strong refer to dissociation only
 - 2) concentrated vs. dilute
 - a) amount of particles in the solution
 - b) **molarity**—(M); a measure of solution concentration in mol/L
 - 3) application

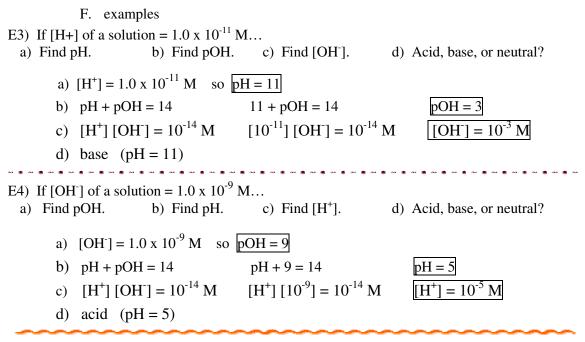
SAMPLE 1: a 0.10 M solution of H2SO4SAMPLE 2: a 1.00 M solution of HFWhich is more concentrated?(HF, because the molarity is higher)Which is the stronger acid?(H2SO4, because it is listed as a strong acid and HF isn't)

18.3 Notes

- IV. pH (the power of Hydrogen)
 - A. neutrality of water
 - 1) Water is mostly neutral $[H^+] = [OH]$ $[H^+] = 10^{-7} M$ and $[OH] = 10^{-7} M$
 - 2) Ion product constant for water = K_w

$K_w = [H^+] [OH^-] = 10^{-14} M$

- 3) Acidic solutions: $[H^+] > [OH^-]$
- 4) Basic (alkaline) solutions: $[OH^-] > [H^+]$
- B. \mathbf{pH} = the negative logarithm of the hydrogen ion concentration


$\mathbf{pH} = -\log\left[\mathbf{H}^{+}\right]$

- C. pH is a measure of the acidity or basic quality (alkalinity) of a substance
- D. pH values
 - 1) acid pH < 7
 - 2) base pH > 7
 - 3) **<u>neutral</u>** pH = 7

-	•	+	-	-	-	+	-	-	-	+	+	-	-	-	+	+	+	-	+		-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	-	-	-	-
()																			7	,																		1	4
S	tr	01	nge	est	a	cid]	neu	tr	al												5	str	on	ge	est	ba	se

E. other important equations

pOH = - log [OH⁻] pH + pOH = 14

18.4 notes

V. Neutralization reactions

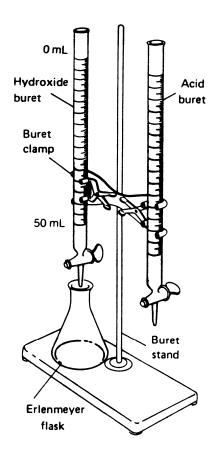
 $ACID + BASE \rightarrow WATER + SALT$

- A. <u>neutralization</u>—when acid and base "cancel each other out"
- B. acid-base neutralization net ionic equation: $H^+ + OH^- \rightarrow H_2O$
- C. common acids
 - 1) hydrochloric acid = HCl
 - 2) acetic acid = $HC_2H_3O_2$ or CH_3COOH
 - 3) nitric acid = HNO_3
 - 4) sulfuric acid = H_2SO_4
 - 5) phosphoric acid = H_3PO_4
 - 6) carbonic acid = H_2CO_3
- D. classic double displacement reactions $AB + CD \rightarrow AD + CB$
 - 1) You will have to write and balance these double displacement reactions.
 - 2) If the formula is not provided, you must "crisscross" to get it.
 - 3) Remember, to get the products, you must "un-crisscross" and "re-crisscross" the reactant ions.
 - 4) If you have trouble balancing, keep water as H(OH) to make it easier.
 - 5) Practice naming the salt that is formed.

E5) hydrochloric acid + strontium hydroxide \rightarrow _____ + ____

$H^+ Cl^-$	$\mathrm{Sr}^{2+}(\mathrm{OH})^{-}$	H^+ (OH) Sr^{2+} Cl
A B	+ C D	\rightarrow A D + C B
Acid	+ Base	→ Water + Salt
<u>2</u> HCl	+ $Sr(OH)_2$	\rightarrow H ₂ O + SrCl ₂
		salt = strontium chloride

E6)


phosphoric acid + magnesium hydroxide \rightarrow _____ + ____

H^{+} $(PO_4)^{3-}$		$Mg^{2+}(OH)^{-}$	$H^{+}(OH)^{-}$ $Mg^{2+}(PO_{4})^{3-}$
A B	+	C D	\rightarrow A D + C B
H_3PO_4	+	Mg(OH) ₂	\rightarrow H ₂ O + Mg ₃ (PO ₄) ₂
<u>2</u> H ₃ PO ₄	+	$3 Mg(OH)_2$	\rightarrow <u>6</u> H ₂ O + Mg ₃ (PO ₄) ₂
			salt = magnesium phosphat

VI. Titration

- A. titration—adding a specific amount of a solution of known concentration to a solution of unknown concentration, to calculate the molarity (M) of the unknown solution
- B. standard solution-the solution of known concentration
- C. End point of the titration: when $[H^+] = [OH^-]$
- D. indicators
 - a) a *dye* which is a different color in an acid vs. a base
 - b) phenolphthalein (PHTH) = clear in acid, "funky fuchsia" in base
 - c) other indicator dyes: methyl red, bromothymol blue, Orange IV...

TITRATION LAB SETUP

