Chem. I Notes – Ch. 11 – STOICHIOMETRY

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

11.1 notes

 $1 \text{ MOLE} = 6.02 \times 10^{23} \text{ representative particles}$ representative particles = ATOMS, IONS, MOLECULES, & FORMULA UNITS ("funs") $\frac{\text{CONVERSION FACTOR SUMMARY:}}{6.02 \times 10^{23} \text{ representative particles}} = \frac{1 \text{ MOLE}}{6.02 \times 10^{23} \text{ representative particles}}$ $\frac{\text{MOLAR MASS (g)}}{1 \text{ MOLE}} = \frac{1 \text{ MOLE}}{\text{MOLAR MASS (g)}}$ $\frac{22.4 \text{ L (for a gas at STP)}}{1 \text{ MOLE}} = \frac{1 \text{ MOLE}}{22.4 \text{ L (for a gas at STP)}}$

I. Stoichiometry

- A. **stoichiometry**—using balanced chemical equations to obtain info.
- B. information from a balanced equation
 - 1) numbers of particles: atoms, ions, molecules, formula units
 - 2) numbers of moles = mole ratios = coefficient ratios
 - 3) *mass* = molecular masses from the periodic table
 - 4) volume, if at STP, 22.4 L = 1 mol of gas

Only mass and atoms are conserved (reactant numbers = product numbers).

	$_{2}H_{2}(g) + _{2}$	$_{0}$ $_{0}$ $_{0}$ $_{0}$	\rightarrow	$\underline{2}$ H ₂ O (g)
# atoms in balancing	4 H	2 O	=	4 H, 2 O
r.p.	2 molecules	1 molecule		2 molecules
mol	2 mol	1 mol		2 mol
g	4(1.0) = 4.0 g	2(16.0) = 32.0 g	=	2(18.0) = 36.0 g
L (STP)	2(22.4) = 44.8 L	22.4 L		2(22.4) = 44.8 L

11.2 notes – stoich calculations

II. Mole - Mole (MOL – MOL) Conversions

- A. the most important, most basic stoich calculation
- B. *uses the coefficients of a balanced equation* to compare the amounts of reactants and products
- C. coefficients are mole ratios
- D. the way to go from substance A to substance B
- E. mol mol is the only time the mole number in the conversion is not automatically 1. (Avogadro's #, molar mass, and 22.4 L (STP) are all equal to 1 mole.)

MOL - MOL:	# mol B (new, ending substance – what is being asked for)	
	# mol A (old, starting substance – what is given originally)	
# = coefficients		

F. examples

E1) How many moles of carbon monoxide are produced when carbon reacts with 0.750 mol of oxygen?

```
Unbalanced: C + O_2 \rightarrow CO Balanced: 2C + O_2 \rightarrow 2CO

0.750 \frac{\text{mol } O_2}{\text{mol } O_2} \times 2 \frac{\text{mol } CO}{1 \frac{\text{mol } O_2}{\text{mol } O_2}} = 1.50 \frac{\text{mol } CO}{1.50 \frac{\text{mol } CO}{1.50 \frac{\text{mol } O_2}{\text{mol } O_2}}
```

E2) Aluminum reacts with oxygen gas to form aluminum oxide. Find the number of moles of both reactants, if 0.661 mol of product is formed.

$$Al + O_2 \rightarrow Al_2O_3 \qquad \qquad \underline{4}Al + \underline{3}O_2 \rightarrow \underline{2}Al_2O_3$$

$$0.661 \, \underline{\text{mol Al}_2O_3} \times \underline{4} \, \underline{\text{mol Al}} = \underline{[1.32 \, \text{mol Al}]} \qquad 0.661 \, \underline{\text{mol Al}_2O_3} \times \underline{3} \, \underline{\text{mol O}_2} = \underline{[0.992 \, \text{mol O}_2]} \times \underline{2} \, \underline{\text{mol Al}_2O_3}$$

III. <u>MASS – MASS Conversions</u> – Using molar mass in stoich problems to predict masses of reactants and/or products

- A. a balanced chemical equation can be used to compare masses of reactants and products
- B. mass mass cannot change which substance you are dealing with; only mol mol can do that

C. examples

 $H_2 + Cl_2 \rightarrow HCl$

E3) How many grams of hydrochloric acid are made from the reaction of 0.500 g of hydrogen gas with excess chlorine gas?

GAME PLAN: KNOWN, PER.TABLE, COEFF., PER.TABLE
$$0.500 \text{ g-H}_2 \text{ x } \frac{1 \text{ mol-H}_2}{2.0 \text{ g-H}_2} \text{ x } \frac{2 \text{ mol-HCl}}{1 \text{ mol-H}_2} \text{ x } \frac{36.5 \text{ g-HCl}}{1 \text{ mol-HCl}} = \boxed{18 \text{ g-HCl}}$$

 $H_2 + Cl_2 \rightarrow 2HCl$

E4) Calculate the numbers of grams of products formed when 25.0 g of sodium nitrate decomposes into sodium nitrite and oxygen.

```
NaNO_{3} \rightarrow NaNO_{2} + O_{2} \qquad \underline{2}NaNO_{3} \rightarrow \underline{2}NaNO_{2} + O_{2}
25.0 \text{ g NaNO}_{3} \times \underline{1 \text{ mol NaNO}_{3}} \times \underline{2 \text{ mol NaNO}_{2}} \times \underline{69.0 \text{ g NaNO}_{2}} = \underline{20.3 \text{ g NaNO}_{2}}
25.0 \text{ g NaNO}_{3} \times \underline{1 \text{ mol NaNO}_{3}} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}} \times \underline{32.0 \text{ g O}_{2}} = \underline{4.71 \text{ g O}_{2}}
85.0 \text{ g NaNO}_{3} \times \underline{1 \text{ mol NaNO}_{3}} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}} \times \underline{1 \text{ mol O}_{2}}
```

IV. MOLE-MASS (or MASS-MOLE) Conversions

"MASS – MOLE":

GIVEN g A x 1 mol A x CE mol B
PT g A CE mol A

"MOLE – MASS":

GIVEN mol A x CE mol B x PT g B
CE mol A 1 mol B

PT = periodic table, molar mass CE = coefficients

E5) How many g of water are produced from the complete combustion of 0.6829 mol of C₂H₂?

$$C_2H_2 + O_2 \rightarrow CO_2 + H_2O$$
 $\underline{2}C_2H_2 + \underline{5}O_2 \rightarrow \underline{4}CO_2 + \underline{2}H_2O$
 $0.6829 \frac{\text{mol } C_2H_2}{\text{2 mol } H_2O} \times \underbrace{18.0 \text{ g } H_2O}_{\text{1 mol } H_2O} = \underbrace{12.3 \text{ g } H_2O}_{\text{2 mol } C_2H_2}$

E6) Using the equation $\underline{2}C_2H_2 + \underline{5}O_2 \rightarrow \underline{4}CO_2 + \underline{2}H_2O$ how many moles of O_2 would be needed to produce 56.09 g of CO_2 ?

$$56.09 \frac{\text{g CO}_2}{\text{g CO}_2} \times \frac{1 \text{ mol CO}_2}{44.0 \frac{\text{g CO}_2}{\text{g CO}_2}} \times \frac{5 \text{ mol O}_2}{4 \text{ mol CO}_2} = \frac{1.59 \text{ mol O}_2}{1.59 \text{ mol O}_2}$$

V. MASS-VOLUME (or VOLUME - MASS) Conversions -

Using molar volume in stoich problems

```
"MASS – VOLUME": (gases @ STP)

GIVEN g A x 1 mol A x CE mol B x 22.4 L B

PT g A CE mol A 1 mol B

"VOLUME – MASS": (gases @ STP)

GIVEN L A x 1 mol A x CE mol B x PT g B

22.4 L A CE mol A 1 mol B

PT = periodic table, molar mass CE = coefficients
```

E7) How many L of hydrogen are produced from the decomposition of 3.50 g of water at STP?

$$H_2O \rightarrow H_2 + O_2$$
 $2H_2O \rightarrow 2H_2 + O_2$
3.50 g H_2O x $\frac{1 \text{ mol } H_2O}{18.0 \text{ g } H_2O}$ x $\frac{2 \text{ mol } H_2}{2 \text{ mol } H_2O}$ x $\frac{22.4 \text{ L } H_2}{1 \text{ mol } H_2}$ = $4.36 \text{ L } H_2$

E8) Using the equation $\underline{2}C_2H_2 + \underline{5}O_2 \rightarrow \underline{4}CO_2 + \underline{2}H_2O$ how many liters of oxygen gas are needed when 5.02 g of C_2H_2 undergoes complete combustion under STP conditions?

$$5.02 \frac{\text{g C}_2\text{H}_2}{\text{g C}_2\text{H}_2} \times \frac{1 \frac{\text{mol C}_2\text{H}_2}{\text{g C}_2\text{H}_2}} \times \frac{5 \frac{\text{mol O}_2}{\text{g C}_2\text{H}_2}}{2 \frac{\text{mol C}_2\text{H}_2}{\text{mol C}_2\text{H}_2}} \times \frac{22.4 \text{ L O}_2}{1 \frac{\text{mol O}_2}{\text{mol O}_2}} = \frac{10.8 \text{ L O}_2}{10.8 \text{ L O}_2}$$

VI. VOLUME-VOLUME Conversions

```
"VOLUME – VOLUME": (gases @ STP)

GIVEN L A x 1 mol A z CE mol B x 22.4 L B 1 mol B

CE = coefficients (SHORT CUT: compare coefficients!)
```

E9) How many liters of carbon dioxide are produced from 0.252 L of hydrochloric acid reacting with excess sodium bicarbonate?

NaHCO₃ + HCl → NaCl + CO₂ + H₂O
0.252 L HCl x
$$\frac{1 \text{ mol HCl}}{22.4 \text{ L HCl}}$$
 x $\frac{1 \text{ mol CO}_2}{1 \text{ mol HCl}}$ x $\frac{22.4 \text{ L CO}_2}{1 \text{ mol CO}_2}$ = $\frac{0.252 \text{ L CO}_2}{1 \text{ mol CO}_2}$

SHORTCUT: coefficients = 1 mol HCl to 1 mol CO_2 , so 0.252 L HCl = 0.252 L CO_2

E10) How many L of sulfur trioxide are produced from the reaction of 36.1 L of oxygen with sulfur dioxide at STP?

$$SO_2 + O_2 \rightarrow SO_3$$
 $\underline{2}SO_2 + O_2 \rightarrow \underline{2}SO_3$
 $36.1 \ \underline{LO_2} \times \underline{1 \ \text{mol } O_2} \times \underline{2 \ \text{mol } SO_3} \times \underline{22.4 \ LSO_3} = \underline{72.2 \ LSO_3}$
 $\underline{22.4 \ LO_2} \times \underline{1 \ \text{mol } O_2} \times \underline{1 \ \text{mol } SO_3}$

SHORTCUT: coefficient of $O_2 = 1$; coefficient of $SO_3 = 2$ 36.1 L x 2 = 72.2 L SO_3

VII. MASS – PARTICLE (or PARTICLE-MASS) Conversions

```
"MASS – PARTICLE": (specify the type of r.p.)

GIVEN gA x 1 mol A PT g A CE mol B x (6.02 x 10<sup>23</sup>) r.p. B

"PARTICLE – MASS": (specify the type of r.p.)

GIVEN r.p. A x 1 mol A x CE mol B x PT g B (6.02 x 10<sup>23</sup>) r.p. A CE mol A 1 mol B

PT = periodic table, molar mass

CE = coefficients
```

E11) How many r.p. of barium sulfate are made from reacting 5.33 g of barium hydroxide with sulfuric acid?

$$Ba(OH)_{2} + H_{2}SO_{4} \rightarrow BaSO_{4} + H_{2}O \qquad Ba(OH)_{2} + H_{2}SO_{4} \rightarrow BaSO_{4} + 2H_{2}O$$

$$5.33 \frac{g Ba(OH)_{2}}{171.3 \frac{g Ba(OH)_{2}}{2}} \times \frac{1 \text{ mol } BaSO_{4}}{1 \text{ mol } Ba(OH)_{2}} \times \frac{6.02 \times 10^{23} \text{ fun. } BaSO_{4}}{1 \text{ mol } BaSO_{4}} = 1.87 \times 10^{22} \text{ fun. } BaSO_{4}$$

$$1 \frac{1}{100} \frac{1}$$

E12) How many r.p. of NH₃ are produced from reacting 2.07 g of hydrogen with nitrogen?

$$N_2 + H_2 \rightarrow NH_3$$
 $N_2 + 3H_2 \rightarrow 2NH_3$
 $2.07 \text{ g H}_2 \text{ x } \frac{1 \text{ mol H}_2}{2.0 \text{ g H}_2} \text{ x } \frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2} \text{ x } \frac{6.02 \text{ x } 10^{23} \text{ molecules NH}_3}{1 \text{ mol NH}_3} = 4.2 \text{ x } 10^{23} \text{ molecules NH}_3$

11.3 notes

- VIII. Limiting Reactant (Limiting Reagent)
 - A. <u>limiting reactant</u>—the *reactant present in the smallest quantity*, limiting the amount of product being made
 - B. <u>excess reactant</u>—the *reactant present in a greater quantity* than the limiting reactant; does not limit formation of product
 - C. example
- E13) Aluminum metal reacts with chlorine gas to form aluminum chloride.

If 5.40 mol of aluminum and 8.00 mol of chlorine are available...

- A) Which is the limiting reactant?
- C) How many moles of product form?
- B) Which is the excess reactant?
- D) How many moles of excess reactant are left over?

$$Al + Cl_2 \rightarrow AlCl_3$$

$$\underline{2}Al + \underline{3}Cl_2 \rightarrow \underline{2}AlCl_3$$

5.40 mol 8.00 mol

5.40
$$\frac{\text{mol Al}}{\text{mol Al}}$$
 x $\frac{3 \text{ mol Cl}_2}{2 \frac{\text{mol Al}}{2}} = 8.10 \text{ mol Cl}_2$ needed ...

This is the amount of Cl_2 needed to react with 5.40 mol Al. There are only 8.00 mol available.

- A) Cl_2 is the limiting reagent. If Cl_2 is limiting, Al must be in excess. Check it anyway.
- 8.00 mol Cl₂ x $\frac{2 \text{ mol Al}}{3 \text{ mol Cl}_2}$ = 5.33 mol Al needed
- B) Al is the excess reagent.
- C) Use the limiting reagent to find the product, since that is the chemical limiting the yield.

$$8.00 \frac{\text{mol Cl}_2}{\text{mol AlCl}_3} = 5.33 \frac{\text{mol AlCl}_3}{\text{mol Cl}_2}$$

D) Remaining excess reagent = (given - used)

$$5.40 - 5.33 \text{ mol Al} = 0.07 \text{ mol Al}$$

11.4 notes

- IX. Percent Yield
 - A. **percent yield**—percentage of product recovered; comparison of actual and theoretical yields
 - B. actual yield—amount of product obtained in lab
 - C. **theoretical yield**—amount of product predicted by the math (theory)

- D. examples
- E14) 35.0 g of product should be recovered from an experiment. A student collects 22.9 g at the end of the lab. What is the percent yield?

$$\frac{22.9 \text{ g}}{35.0 \text{ g}} \times 100 = \boxed{65.4\%}$$

E15) What is the percent yield if 2.89 g of sodium chloride is produced when 1.99 g of hydrochloric acid reacts with excess sodium hydroxide?

$$HC1 + NaOH \rightarrow NaC1 + H_2O$$
 Percent yield implies product yield.

Actual yield = 2.89 g NaCl Theoretical yield = ?

1.99 g HCl x
$$\frac{1 \text{ mol HCl}}{36.5 \text{ g HCl}}$$
 x $\frac{1 \text{ mol NaCl}}{1 \text{ mol HCl}}$ x $\frac{58.5 \text{ g NaCl}}{1 \text{ mol NaCl}}$ = 3.19 g NaCl theoretical yield

% YIELD =
$$\frac{\text{ACTUAL YIELD}}{\text{THEORETICAL YIELD}}$$
 x 100 = $\frac{2.89 \text{ g NaCl}}{3.19 \text{ g NaCl}}$ = $\frac{90.6\%}{1.00 \text{ g NaCl}}$