APES LAB: HYDROCARBON STRUCTURE

This is an informal lab. The data table is all to be submitted.

Objectives

- To learn about hydrocarbon structure
- To see how common hydrocarbons are constructed
- To practice "building" and drawing hydrocarbon structures

Introduction

The study of carbon compounds is called *organic chemistry*. *Hydrocarbons* are compounds which contain carbon and hydrogen. Some hydrocarbon characteristics are summarized below:

- *aliphatic*—made of chains
- *cyclic*—made or rings
- *aromatic*—made of rings with alternating single and double bonds

Prefixes tell how many carbons are in the main structure:

meth = 1	hex = 6
eth = 2	hept = 7
prop = 3	oct = 8
but = 4	non = 9
pent = 5	dec = 10

Carbons in a hydrocarbon are bonded to one another. Hydrogens are always terminal (hanging off the ends). As a hint to drawing the structure, some books write out the formula as it is linked together, as in $CH_3CH_2CH_2CH_2CH_2CH_3$ for hexane, instead of C_6H_{14} .

Carbon can form four chemical bonds. The types of bonds affect the geometry of the molecule. If a bond is coming toward you, use a bold line. For bonds facing away from you, use a dotted line.

4 single = *tetrahedral* (3-D pyramid shape)

1 double, 2 singles = *trigonal* (triangular flat) *planar*

1 triple, 1 single = *linear* (flat)

So single-bonded carbon chains actually "zigzag" in real life.

Hydrocarbons can also be classified according to the types of bonds they contain:

- *alkanes*—chain with single bonds only; C_nH_{2n+2}
- alkenes—chain with double bond(s); general formula C_nH_{2n}
- *alkynes*—chain with triple bond(s); general formula C_nH_{2n-2}
- *arenes*—aromatic hydrocarbons; general formula C_nH_n , with alternating single and double bonds

Procedure

1) Set up a data table with four columns. It works better with the paper turned sideways. Use a ruler. Make sure you have plenty of room to draw.

COMPOUND	COMPOUND	<u>"TOOTHPICK"</u>	"BALL-&-STICK"
NAME	FORMULAS	(symbols connected with lines)	(draw colored circles
Pentane	C_5H_{12} CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH	3	with bond angles)

- 2) Write each compound *name* in the data table.
- 3) For compounds #2-9, write each formula in TWO WAYS: *condensed* (like C₅H₁₂) and *expanded* (like CH₃CH₂CH₂CH₂CH₃).

- 4) Draw the "toothpick" structure for the following organic compounds.
- 5) Build each model as you go. Make sure all group members see each model, and take turns building. Use the kit's color key.
- 6) Draw the "ball-and-stick" structure for each. Use colors that match the kit, and include a *color key*. Try to get the correct bond angles as described in the introduction.

DATA

PART 1

ALIPHATIC ALKANES: (chains)

- 1) methane ("swamp gas") = CH_4
- 2) ethane = C_2H_6
- 3) propane (main component of "natural gas") = C_3H_8
- 4) butane (lighter fluid) = C_4H_{10}
- 5) octane (in gasoline) = C_8H_{18}
- CYCLIC ALKANES: (rings)
 - 6) cyclopropane C_3H_6 (For #6 only, use single springs to connect the carbons.)
 - 7) cyclopentane C₅H₁₀
 - 8) cyclohexane C_6H_{12}
- AROMATIC/ARENES: (Use two springs for a double bond.)

9) benzene (C₆H₆ in a ring) ** DON'T DISASSEMBLE! YOU NEED IT FOR #10 & #11**

COMPOUND	COMPOUND	"TOOTHPICK"	"BALL-&-STICK"
NAME	FORMULA	(symbols connected with lines)	(draw colored circles
	(condensed only)		with bond angles)

PART 2

More ARENES and their derivatives: (Use two springs for a double bond.)

- 10) toluene $(C_6H_5)(CH_3)$
- 11) phenol (C_6H_5)OH
- ALKENES: (Use two springs for a double bond.)
 - 12) ethene (ethylene) C₂H₄
 - 13) 2-pentene CH₃CHCHCH₂CH₃
- ALKYNES: (Use three springs for a triple bond.)
 - 14) ethyne (acetylene) C_2H_2
 - 15) butyne HCCCH₂CH₃
- ACIDS: (Use two springs for a double bond.)
 - 16) formic acid HCOOH
 - 17) acetic acid (vinegar acid) CH₃COOH
- ALCOHOLS:
 - 18) methanol (wood alcohol) CH₃OH
 - 19) ethanol (drinking alcohol) CH₃CH₂OH
- ALDEHYDES: (Use two springs for a double bond.)
 - 20) formaldehyde H₂CO
 - 21) acetaldehyde (ethanal) CH₃CHO
- ETHERS:
 - 22) dimethyl ether CH₃OCH₃
 - 23) methyl ethyl ether CH₃OCH₂CH₃
- MISC. POLLUTANTS: (Use three springs for a triple bond if needed.)
 - 24) hydrogen cyanide HCN
 - 25) acteonitrile CH₃CN
 - 26) dichloromethane CH_2Cl_2
 - 27) ethylene glycol HOCH₂CH₂OH